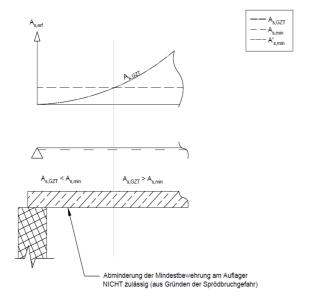
Anlage A


Abbildungen und Formeln zur Erläuterung der Regelung der Mindestbewehrung von massigen Betonbauteilquerschnitten

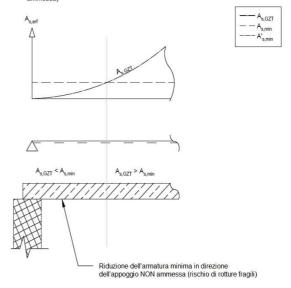
Art. 1

Definition der Bereiche zulässiger Bewehrungsreduktion unter die Mindestbewehrung im Grenzzustand der Tragfähigkeit

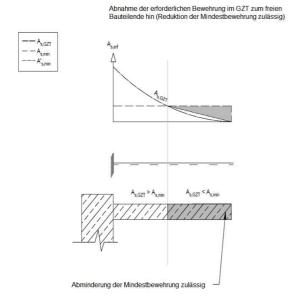
(Abbildung 1) Nicht zulässige Reduktion der Mindestbewehrung beim Auflager

Abnahme der erforderlichen Bewehrung im GZT zum Auflager hin (keine Reduktion der Mindestbewehrung zulässig)

Allegato A

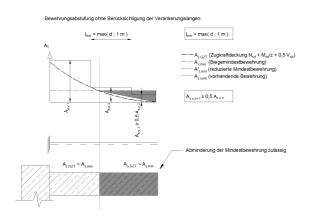

Figure e formule del regolamento sull'armatura minima per strutture massicce in calcestruzzo

Art. 1

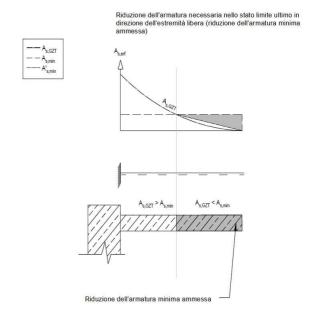

Definizione delle zone in cui è ammissibile la riduzione dell'armatura sotto il limite minimo nello stato limite ultimo

(Figura 1) Riduzione dell'armatura minima non ammessa in corrispondenza dell'appoggio

Riduzione dell'armatura necessaria nello stato limite ultimo in direzione dell'appoggio (riduzione dell'armatura minima non ammessa)

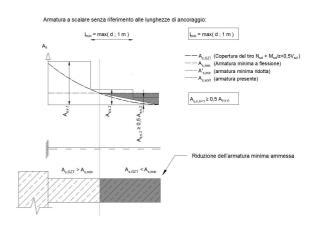


(Abbildung 2) Zulässige Reduktion der Mindestbewehrung beim freien Auflager

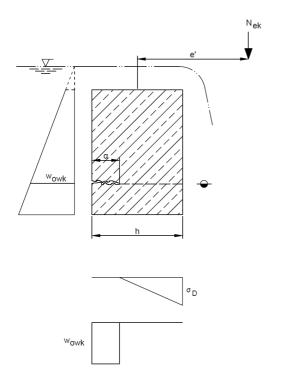


Art. 2
Bewehrungsabstufung

(Abbildung 1) Bewehrungsabstufung ohne Berücksichtigung der Verankerungslängen

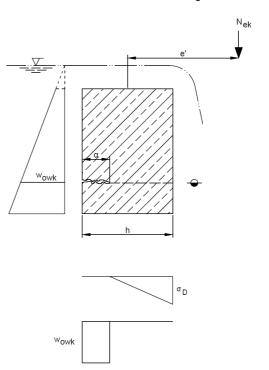


(Figura 2) Riduzione dell'armatura minima ammessa in corrispondenza di appoggio libero


Art. 2 *Armatura a scalare*

(Figura 1) Armatura a scalare senza riferimento alle lunghezze di ancoraggio

Art. 3
Wasserdruck im Inneren von Bauteilen


(Abbildung 1) Systemskizze für den Wasserdruck im Inneren von Bauteilen

Art. 3

Pressione idrostatica interna

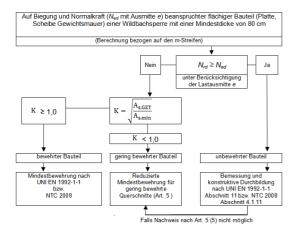
(Figura 1) Schizzo di principio per il caso di pressione idrostatica all'interno degli elementi

Art. 4
Berechnungen

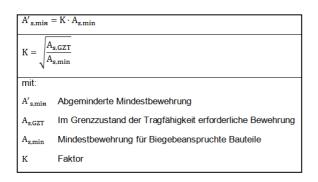
(Formel 1) Berechnung der Risstiefe a

	$a = \frac{3 \cdot N_{Ek} \cdot e'}{N_{Ek} - h \cdot w_{owk}} - \frac{h}{2}$
mit	
a	Risstiefe
e′	$\text{Lastexzentrizit\"{a}t} \; \text{e}' = \frac{M_{\text{E}k}}{N_{\text{E}k}} \; \label{eq:epsilon}$
M_{Ek}	Charakteristischer Wert des einwirkenden Moments
N_{Ek}	Charakteristischer Wert der einwirkenden Normalkraft
h	Querschnittshöhe
W _{owk}	Charakteristischer Wasserdruck auf Höhe der Fuge

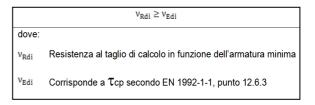
Art. 4
Calcoli

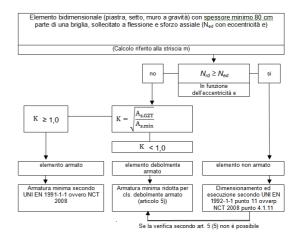

(Formula 1) Calcolo profondità della fessura a

	$a = \frac{3 \cdot N_{Ek} \cdot e'}{N_{Ek} - h \cdot w_{owk}} - \frac{h}{2}$
mit	
a	Profondità della fessura
e′	
M_{Ek}	Valore caratteristico del momento agente
N _{Ek}	Valore caratteristico della forza assiale agente
h	Altezza della sezione
w _{owk}	Pressione idrostatica caratteristica alla quota della fuga


(Formel 2) Berechnung der aufnehmbaren Schubkräfte

$\nu_{Rdi} \geq \nu_{Edi}$ mit: ν_{Rdi} Bemessungsschubwiderstand unter Berücksichtigung der Mindestbewehrung ν_{Edi} Entspricht τ cp aus EN 1992-1-1, Abschnitt 12.6.3


(Abbildung 1) Berechnung der Mindestbewehrung in Bauteilen mit gering bewehrtem Beton


(Formel 3) Berechnung der Abminderung der Mindestbewehrung

(Formula 2) Calcolo del taglio ammissibile

(Figura 1) Calcolo dell'armatura minima in elementi di calcestruzzo debolmente armato

(Formula 3) Calcolo della riduzione dell'armatura minima

$A'_{s,\min} = K \cdot A_{s,\min}$		
$K = \sqrt{\frac{A_{s,GZT}}{A_{s,min}}}$		
dove:		
A' _{s,min}	Armatura minima ridotta	
A _{s,GZT}	Armatura verificata allo stato limite ultimo	
A _{s,min}	Armatura minima per elementi sottoposti a flessione	
K	Fattore	